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Appreciation

This book aims to develop critical thinking skills through problem solving.
Fach chapter is based on published research by the author and demonstrates
a detailed thinking process for a specific problem that may arize in a
diverse selection of research areasz such as communication, biology, data
mining, computer architecture and general computer science, The author
beging each chapter by describing a single problem of interest and
motivations for this study before diving inte formal treatments of the
topic and ending with comments, suggestions and open problems for
further research in the conclusion. The bock is modular with self-contained
chapters suitable az a reference book for researchers or as a textbock for
graduate gtudents in algorithrms,

The author emphasizes firm theoretical understanding of each problem
with related complexities. Formal treatment of cyber security 1s an example
of such an approach where the problem is properly defined with two
computing problems from the economic perspectives of the attackers and
defenderz. The author first definesa cyber security model, discusses two
cornputing solutions and analyges their complexities that turn out to be
NP-complete. Approximation algorithms are then introduced.

The topics selected are relevant and important for the digital transformation
age whichiis atill lacking theoretical treatments. The author has made
an atternpteto Al this gap and stimulate interest.

Graduate students will not only learn from the materials covered, but
also from the research approaches taken in this book.

Professor Kanchana Kanchanazut
School of Engineering and Technology
Asian Institute of Technology
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Foreword

It is my great pleasure to write this foreword. In his latest book, Problem Solving
in Algorithms: A Research Approach, Dr. Sanpawat Kantabutra provides an
innovative and refreshing perspective on how to go about solving a problem in
a computing discipline. To the extent possible, he walks the reader through the
equivalent of the sclentific method for computing. Although the work is largely
ahstract, Dr. Kantabutra does a good job in making it feel concrete and hands-
on. His approach is a nuts-and-bolts one, where sometimes a hypothesis leads
to a dead end. And, as Dr. Kantabutra points out, such dead ends are part
of the process of doing successful research. Along the way to solving difficult
problems, failures are encouraged and to be expected. The road to achieving
the final answer is a long and winding one, but a very rewarding journey in the
long run. This blue-collar appreach to critical thinking and problem solving will
be of great benefit to many students, researchers;and faculty members alike.

I applaud Dr. Kantabutra for including chapters on an extremely diverse set
of topics. He includes material on networking, graph labeling, wireless communi-
cation, hierarchical clustering, cyber-security, partitions, graph theory, parallel
computation, and clustering. In all cages, he makes a serious effort to provide
the reader with the backeground necessary to comprehend these different do-
maing. Along another dimension, he explores algorithms from a wide variety
of angles—sequential, parallel (on several different models), and randomized.
Each different topic, combinediwith a different algorithmic framework, provides
him with a rich playing field; one where he can touch on many aspects problem-
solving Issues and critical-thinking skills. Dr. Kantabutra takes full advantage
of all the varicus options to cover a wide range of techniques and thought pro-
cesses. Hach different model that he describes gives the reader the opportunity
to experiment in a broad range of settings.

The book fulfills Dr. Kantabutra's goals of teaching the reader how to prob-
lem solve and go about conducting research in any computing domain. The
techniques introduce the reader to new ways of thinking and methods for view-
ing problems. He helps the reader develop a problem-solving toolkit, as it were.
When a reader gets stuck in an effort to solve a problem, this bock contains
techniques that can help guide research or help one to shift directions, say by
trying a new process or methodology or asking another relevant question. Dr.
Kantabutra takes the reader on a problem-solving journey, and one feels as
though he is there accompanying you on that journey—providing encourage-
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ment, guidance, strategies, wisdom, and support. The book can help bhoost
one's confidence in going about research. I strongly recommend the book to
advanced undergraduate students with a foundation in a computing discipline,
graduate students, instructors, and professors who want to get involved in re-
search. The book is well-written, friendly, easy-to-use, and highly innovative.
Kudos to Dr. Kantabutra for taking on another ambiticus project and seeing
it through to an excellent conclusion.

Dr. Raymond Greenlaw
July 20, 2020
Office of Naval Research Distinguished Chair in Cyber-Security, Retired

United States Naval Academy
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Preface

This Problem Solving in Algorithms book is designed to illustrate how research
in theoretical computer science is typically conducted. In particular, some com-
monly found proof techniques in the design and analysis of algorithms and some
important mathematical ideas are discussed in length. Unsurprisingly, our ap-
proach In composing this book Is research-based because we feel that it is the
best way to practice critical thinking and problem-solving skills. Topics in each
chapter are chosen such that they are diverse, interesting, and recent. FEach
chapter can also be used separately as a case study In class. There are ten
chapters in this bock, covering topics ranging from data clustering; to cyber se-
curity, to wireless communication, to graph theory, and to parallel computation.
All materials in these chapters are selected from apool of our recent research
publications. In each chapter we first discuss how a theoretical model is defined
and the reasons that it is defined in a particular way. We then show how a prob-
lem is defined with respect to the theoretical model. Possible proof techniques
and the reasons that they might be or might . not-be used are surveyed. Addi-
tionally, an alternative is shown when‘oneis available. In illustrating our points
we discuss possible solutions. Of courge, some of them might be wrong. But
this iz what usually happensinresearch or in problem solving. In fact, it is our
intention to show several wrong solutions to a problem because to realize that
something Is wrong Is an essential part of research and self discovery. At the end
of each chapter we provide a problem set. A problem marked with an asterisk
may be either open, difficult, or time-consuming. This book aims at graduate
students, researchers, and computer professionals in computer science or related
fields. We expect that readers should have a strong background in the design
and analysis of algorithms and discrete mathematics at the undergraduate level.
Readers should feel comfortable with basic mathematical proof techniques such
as mathematical induction, proof by counter examples, and proof by contradic-
tion. This book is not an introduction to complexity and algorithms. However,
when there are certain things that we feel readers might not already have learnt
in class, a review and/or a book reference are given.

Dr. Sanpawat Kantabutra
The Theory of Computation Group
July 20, 2020
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CHAPTER 1 1
NETWORK EMBEDDING

Chapter 1

Network Embedding

“When you get stuck, do ¢t over.”

In this chapter we introduce a concept of network embedding. Roughly speak-
ing, network embedding is a way to use another network A when your physical
network is not A. For instance, if vour physical network is a ring network but
your communication protocol is based.on a line network, how are you going
to make your communication protocolework without buying a new expensive
line network or totally changing/the ¢ommunication protocol to suit a ring net-
work? The first thing to obhserve is that a line network is a subnetwork of a
ring network. Hence, if we could “designate” the edges in the ring network to
match those of the line network somehow, our line-based communication proto-
col would work. However; if our physical network is a hypercube network and
our communication protocolis based on a tree network, it is not clear whether a
tree network is & subnetwork of a hypercube network. Indeed, if a tree network
has many nodes; it is not a subnetwork of a hypercube network. In this case we
could still “designate” the edges but with some slowdown factor in speed. For
the rest of this chapter we consider a new theoretical network called Completely
Overlapping Network (CON) and we want to embed a d dimensional hypercube
network into a completely overlapping network. Additionally, taking advantage
of faster and more powerful processors and a large gap between communication
and computation speeds, we also show that the embedded d-dimensional hyper-
cube can be scaled using latency hiding. Related mathematical properties are
also shown for optimal scaling. This chapter elucidates the ideas and thinking
processes in the original work by Kantabutra and Chawachat [23].

1.1 Introduction

Embedding problems are well known among graph theorists, mathematicians,
as well ag computer scientists. Typically, embedding problems are described in
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graph theory terms bul In cur context we describe in computer network terms.
There is a lot of motivation hehind embedding parallel architectures [1], one of
which is the ability to allow one network to operate efficiently in ancther network
with different architectures. Suppose we have two networks A and B. If our
physical network is A and we want to run our communication protocol based on
B, we “embed” network B into network 4. Network A4 is called an embedding
or host network and network B is called an embedded or quest network. In other
words, we simulate network B in network A.

We consider a binary hypercube in this chapter. The binary hypercube is
one of the most versatile and eflicient Interconnection networks yet discovered
for parallel computation. One of the biggest reasons for the popularity of the
hypercube Is its ability to being both host and guest networks efficiently. In
terms of being a host network, a lot of research has been carried out on em-
bedding different topologies into the hypercube. Following aresome examples.
In [2] and [3] a hypercube is embedded with hierarchical networks..In [4]-[6]
authors show how to embed a few kinds of grids into hypercubes. Many kinds
of trees can also be embedded into hypercubes as in [7]:[10). Others embed
star networks inte hypercubes [11], or shuffle networks into hypercubes [12]. In
[13] authors show how to embed a hyper-pyramidiinto a hypercube. On the
other hand, the hypercube can also be a guest network. Many parallel algo-
rithms use hypercubes as the communication topology among their processes.
Some authors, for instance, try to embed-hypercubes into toruses and rings as
in [14]-[15]. Others try to embed a hypercube into a mesh asz in [16]. In a
more mathematical flavor Cayley graphs are shown to be a host for hypercubes
in [17]. In area of optical networks, an efficient embedding of a hypercube in a
Wavelength Division Multiplexing network iz shown in [18].

Motivated by faster Ethernet lines and more powerful processors of the past
two decades, a group of‘computer scientists developed an experimental net-
work called overlapping network [19]-]21]. Since connecting several computer
nodes to a single Ethernet line limited the shared communication channel, they
worked on the concept efusing multiple Ethernet lines in some certain config-
urations. These configurations are in the general classification of overlapping
connectivity networks. Overlapping connectivity networks have the character-
istic that regions of connectivity are provided and the regions overlap so as to
provide parallelism. To generalize their overlapping network for the purpose of
our study, more line segments have been added to their overlapping network
for a complete parallel connectivity; hence, the name completely overlapping
network. A four-node completely overlapping network is shown in Figure 1.1.

At this point several questions should arizse. What does an n-node completely
overlapping network look like? How many line segments are there in terms
of n?7 How do two nodes communicate in an n-node completely overlapping
network? What is the communication protocol? How do we compute time and
communication complexities? Because this is our research, we have to think
about the answers to these questions and eventually give them a model and
related definitions.
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Figure 1.1: Four-node completely overlapping network

1.2 CON and its Related Definitions

Generally, we want our theoretical model and definitions to reflect reality but
there is always a tradeoff to consider. If we design our model to truly reflect
reality, we probably have to add every single detail into our model. Every bit
of detalls Increases the complexity of ©ur model.” The complexity might be so
much that we get bogged down in details and are not able to see the whole
picture. On the other hand, if our model ig too simple, we might not be able to
gain insights into anything. Henee, a balance has to be made when we create a,
model and its related definitions.

We begin with defining an n-node completely overlapping network. Tra-
ditionally, a network is described in a graph theory term. A graph has two
components. Agraph G'= (¥, F) is a set V' of vertices and a set £ of edges. If
we are goingfoaise a graph G to represent CON, how do we relate V and E to
CON? After some thoughts, we realize that two different kinds of vertices are
needed because ann<node CON contains non-computer and computer vertices.
If we are going to proceed in this direction, we would have V =V U V4 and
we would haveto differentiate the two types of vertices in our communication
protocol every time. [t seems more complex and tedicus than necessary. Can we
use some other simpler representation that still suits our purpose? Yes, we can.
Because a completely overlapping network is composed of several overlapped
communication line segments that connect among several nodes or processors
to provide parallelism as shown in Figure 1.1, we can define the network in
terms of vertical and horizontal communication line segments. What else do
we need to consider putting it in our definition of CON besides the line seg-
ments and nodes? None. Hence, we have everything at this point and we define
a completely overlapping network using a 3-tuple containing nodes, horizontal
line segments, and vertical line segments. The following is the formal definition
of an n-node completely overlapping network.

Definition 1 (Completely Overlapping Network). 4 completely overlapping
network is a F-tuple (N, H,V), where N, H, and V are all finite sets, and

1. N 4s the set of n nodes,
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2
2. H is the set of @ horizontal line segments,

2
3.V is the set of %_1) vertical line segments,

where H and V' constitute a grid-like network.

Several remarks are in order. First, putting the three components into a
tuple s a good practice. It forces us to consider only things that are related.
Second, N, H, and V cannot be infinite sets in this context. Hence, it is also
a good practice to state it as such clearly. Since each of the sets is finite, it
is also a good practice to quantify each of them. Observe that horizontal and
vertical line segments should be defined in terms of the variable n to show
their relationships to the number of nodes because each type of line segments
grows with the number of nodes. Lastly, we should make sure that the number

n(nfl)2
2

of horizontal line segments 1s indeed and the number of vertical line

segments is indeed m by mathematical induction (or at least de it in our
head).

We next have to think about how an n-node CON operates. This stage is
relatively easy if we have taken a network course. €hur rules of operations here
mirror those of the real networking protocols. Theseirules are reasonable and
can certainly be Implemented.

Definition 2 (Rules of Operations). The rules are as follows.

1. Horizontal and vertical line segments cannot be shared. In other words,
any line segment can be used-by only one communication at a time.

2, Fach line segment 5 bidirectional,
3. Fach node has o constant memory size.

4. A same message can be concurrently sent from one node to several desti-
nation nodes as long as there is no collision of messages.

5. If there exists contention for a communication line segment, some kind of
priority can be applied.

Once we have defined the rules of operations and the definition of an n-node
completely overlapping network. We need to think about the concept of time.
In general, the kinds of time we are interested in involve communication and
computation. However, in our context of embedding, we are only interested in
communication time. How do we measure it7 Obviously, we cannot measure
it in real time but at least our choice should reflect real time. The number of
horizontal and vertical line segments from node A4 to node B are proportional to
the real time for the communication between 4 and B. We could certainly use it.
But is it too cumbersome? Can we simplify the definition of our communication
time while still having a good representation to the real world? In real world
vertical line segments are usually within a computer node while horizontal line
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Figure 1.2: Communication time steps

gsegments are between computer nodes. Hence, the communication time between
computer nodes are far more significant than the time within a computer node.
Taking this fact into account, we have the following definition.

Definition 3 (Communication Time). Communication time from one node A
to another node B is defined by the number of horizontal line segments the
message has to go through from node Aito node B.

Figure 1.2 illustrates a communication between the leftmost node and the
rightmost node. This communication takes three communication steps (or three
horizontal line segments). At this point our model seems to sufficiently reflect
the real world but we should be prepared to revise it as we proceed to do our
research. This is often the case where we encounter something that needs to be
refined or revised in later stage of research.

Consider next the concept of network embedding. Figure 1.3 shows a two-
dimensional hypercube network or a guest network. We want to “embed” it
into a four-node CONin Figure 1.1. In other words, we want to simulate a two-
dimensional hypercube network in a four-node CON and ideally lose nothing
in efficiengy. What are the components involving this process? Obviously, the
nodes of the two networks have to be considered and so do their edges. How do
we ldentify the nodes and the edges? We need to map beth nodes and edges.
What is a mathematical concept that we can use to define this whole process?
What else do we have to define? Of course, efficiency. We need to be clear
about efficiency and quantify it.

To illustrate the embedding concept, consider Figure 1.4. Figure 1.4 illus-
trates one way of embedding a two-dimensional hypercube into a completely
overlapping network. We number the nodes from left to right and the lines
from top to bottom. The symbol ® indicates the beginning and the end of
a connectlon. A connection is represented by a boldfaced line. A path is de-
noted by nodell) < nodelD). That is, 00 < 01 is the path between nodes
00 and 01. A notation <line ID; node T}, node ID> iz used when a line seg-
ment Indicating a connection between two nodes is referred to. Let = denote
equivalence. In figure 1.4 there are four paths; each path comprises at least
one line segment. The four paths and their corresponding segment components
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00 01

10 11

Figure 1.3: Two-dimensional hypercube

01 10 11
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Figure 1.4: Two-dimensional hypercube embedded in the overlapping network

are 00 < 01 = {< 0;00,0L. >}, 1011 = {< ;10,11 =}, 00 = 10 = {<
1,00,01 >,< 1;01,10 =}y and 01 < 11 = {< 2;01,10 >,< 2;10,11 >}. Ob-
serve that whenever thére is an edge in the hypercube there is a corresponding
path in CON. Hence, the simulation of the hypercube can be done in CON.
Because the communication between any pair of adjacent nodes in hypercube
is done through a single edge; we have a slow down factor of two in the embed-
ded hypercube since we have a corresponding path of at most two edges. This
fact can be used to define efficiency. Also cbserve that there are other ways of
embedding these two four-node networks as well. What are they?

The term embedding is traditionally used with static networks or networks
in which all nodes have direct fixed physical links betwesn them. Mesh, torus,
and hypercube networks are static but our completely overlapping network is
not. In static networks embedding describes mapping nodes of cne network
onto another network. However, in our problem, we must also choose paths of
communication between nodes since we map a static hypercube network onto a
dynamic completely overlapping network. The term dilation s used to indicate
the quality or efficiency of the embedding [1]. The dilation is the length of the
longest path in the “embedding” network, (i.e., completely overlapping network)
corresponding to one link or edge in the “embedded” network (i.e., hypercube
network). When the dilation iz one, algorithms would have the same speed in
the embedding network as they do in the criginal network. But it is sometimes



CHAPTER 1 7
NETWORK EMBEDDING
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Figure 1.5: Three-dimensional hypercube embedded in the overlapping network

not poszible to achieve. In that case, we would liketo have a dilation as small as
possible so that we will have a small slowdown factor. In Figure 1.4 the dilation
is therefore two. At this stage weare réady to formalize the embedding concept.

Definition 4 {(Embedding Problem). Let & = (P, E) be a d-dimensional hy-

percube, where P is a set'of vertices, and E is o set of edges. Let O = (N, H,V)

be a completely overlapping network, where N is a sel of nodes of an equal size

to the set P, H is'a set {hi ha, ks, ... R 12} of horizontal line segments,
2

and V is aset {v1,v0,v4,. .., V.20, } of vertical line segments. The optimal

embedding preblem of € into O 252 defined by a bijective funclion f : P — N
and an injective function g : B — P(H), where P(H) is a power set of H. The
problem @s to minimize the size of the mozimal set x € P(H) or path x that
corresponds o an edge in B,

Several remarks are in order. Like the definition of an n-node CON, we use
a tuple to define a hypercube. Also observe that the naming of things should
be easy to remember such as F for edges and H for horizontal line segments
unless we have no other obvious choices. Because the embedding is essentially a
mapping of vertices and paths, we use the concept of mathematical functions to
define it. The mapping between vertices of the two networks Is one-tc-one and
onto while the mapping hetween the edges and the paths is one-to-one. Hence,
we appropriately use bijection and injection, respectively. Among all of these
possible mappings, we want a mapping that minimizes a path z that corresponds
to an edge in £. When we work with minimization and maximization problems,
it 1s always a good practice to think about the uniqueness of their sclutions. For
example, we could have two or more ways of embedding that share the same
minimum solution.
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1.3 The Embedding Algorithm

Given an n-node hypercube network and an r-node CON, we consider ways of
embedding the hypercube intc the CON. We could use a greedy approach to
locally minimize the dilation. For example, we could pick an edge {p,p'} € F of
the hypercube network and map the corresponding pair p and »’ to nedes ¢ and
4 in CON such that the dilation between the two nodes 4, 7 in CON is minimal.
We repeat the process greedily for the subsequent edges in F until no edge is
left. Unfortunately, this greedy approach does not always work (why?). We
want to minimize the dilation of the embedding. Can we use a. naive approach?
Observe that this problem is equivalent to the problem of embedding an n-node
hypercube into an n-node line. Hence, a naive approach iz to try n! possible
ways of mapping the n nodes and pick the one that yields the minimum dilation.
Sadly, although a minimum dilation is guaranteed, this approach is not so good
because n! > 2. The time complexity would he too great to wait for the result.
Fortunately for us, Harper [22] developed an optimal embedding scheme that
embeds a 2%node hypercube (or d-cube) into a 2%node line. His algorithm
ordered the labels of the nodes by their weights. The weight of a label is just
the number of one’s in its binary representation. Labels with the same weight
are ordered in descending order. Then the processesiof the 2%-node hypercube
ordered In that way are allocated to the nodes of the line from left to right.
However, his embedding solution does not accommodate scaling (or folding) on
CON well since it is not symmetric. We will study scaling shortly in the next
section.

In the following paragraphs, we describe @an algorithm that partially solves
the embedding problem of a.hypercube inte a completely overlapping network.
Note that this algorithm does not always produce a minimum dilation. The
definition of the algorithmis firstly given as follows.

Algorithm EMBEDDING (d,CON)
1. If (d=1)

2. connect the two nodes

3. else

4. CONNECT(EMBEDDING (4 — 1,CON),EMBEDDING (d — 1,CON))

The inputs to the algorithm are a 2%-node CON that has not yet been
communication-designated and a hypercube dimension d. Subroutine CON-
NECTY...) connects two nodes whose d — 1 lower-order bits are precisely the
same and whose node positions are in different embedded hypercubes. There-
fore, each pair of nodes will eventually differ exactly one bit in the d-dimensional
embedded hypercube. Figure 1.5 shows the output of the algorithm for embed-
ding a three-dimensional hypercube. Figure 1.6 gives an example of a recursive
definition of cur hypercube embedding algorithm.

A few remarks are in order. When we describe an algorithm, we always
have two options. We could do it iteratively or recursively. Scmetimes either
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Figure 1.6: Example of the recursive deflinition

way 1s fine. But In our case we chose a recursive approach for several reasons.
First, a n-node hypercube is rec¢ursive by definition. Second, recursive code
iz usually a lot shorter az it is in.this case. Third, recursive code is easier to
prove correctness since it Is applicable to mathematical proof by Induction. It
is probably a good brainexercise to write the iterative version of this recursive
code, however.

In Figure 1.4and Figure 1.5 we see that the dilations are 2 and 4 respectively
for hypercubés of dimensions 2 and 3. Can we generalize this result? What
variables @re Inwolved in this generalization? We know that n = 2% In thie
case the variable should be d because it is the dimension of the hypercube in
consideration and ¢ increases continuously while the value of n does not. For
instance, the value of n cannot be 3. What else do we know? In practice
we want to gather as many facts that are related to our preblem at hand as
possible before we attempt to prove it. Some of these facts might be previously
proved claims or definitions or some other common mathematical facts or rules.
How do we know that we have gathered every fact? Unfortunately, we do not
know until the proof is finished. Occasionally, some of these facts may come
from a sub-statement that we have just proved. In other words, while we prove
things, new facts are generated and some of these new facts will be used later
in the context of a larger proof. In our caze at hand, we have the definitions
of the d-dimensional hypercube and the embedding algorithm and some binary
arithmetic. It is also very important to state clearly and unambiguously the
claim that we want to prove. After some thoughts and zeveral scratch papers,
we have the following proposition.

Proposition 1 (Dilation Size). The embedding algorithm produces o dilation
of 2%=1 where d is the hypercube dimension.
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Proof. By the hypercube definition, a d-dimensional hypercube is composed of
two (d—1)-dimensional hypercubes. Let us call a (d— 1)-dimensional hypercube
with a leading 0 in each binary 11} a copy 0 (i.e., 0.} and, likewise, a
{d — 1)-dimensional hypercube with a leading 1 in each binary 11} a copy 1 (i.e.,
lxxxxx...). By definition of the hypercube, each node in copy 0 must have a
connection path to its corresponding node in copy 1 (see figure 1.6). Because
the nodes in the completely overlapping network are in an increasing order, the
dilation of any pair of corresponding nodes i1s the difference between the two
node ID) numbers. Since all d — 1 lower-order bits of the two node I} numbers
are exactly the same, the difference iz 1 at the bit position d which has a value
of 291, O

The algorithm by Harper [22] produces a dilation, for any d > 4, which is
strictly less than that of ours (though it is still exponential ind) but we will
use our embedding algorithm which is more suitable to scaling as we will see
shortly.

1.4 Scaling The Embedded Hypercube

Proposition 1 delivers us a piece of bad news /If the dilation is exponential in d,
we can only simulate a small hypercube in CON because of the exponential slow-
down. How can we mitigate this problem? With the advent of more powerful
coarse-grained processors, computation speed is much higher than communica-
tion speed. We want to take advantage of thisfact. This method is called latency
hiding [24]. Since the processors are veryfast, if we could allocate two or more
processors in the hypercubenetwork to a processor in CON, the communica-
tion among all these virtual processors within a physical processor would become
zero. But the questionds at what cost? This question is hard to answer at this
moment. If we simulate a number of virtual processors by a single physical
processor, we do have a degrease in communication time but we also have an
increase in computation time. We seem to have a trade-off and we want to pre-
cisely quantify this trade-off and this is the place where mathematical reasoning
becomes very useful as we will illustrate it in the next section. For now, let us
consider a latency hiding example of embedding a four-dimensional hypercube
into a 16-node CON. We will refer to the combining of at least two nodes into
one node as folding or scaling.

Figure 1.7 shows the original embedding. Figure 1.8 shows the folding of 2
nodes into one. In other words, we use one processor to simulate two proces-
sors. Figure 1.9 and Figure 1.10 illustrate further reduction of the dilation and
the Increase in the number of virtual processors to be simulated by a physical
processor. Observe that Figure 1.10 achieves the maximum reduction of the di-
lation for the 16-node hypercube. When the hypercube haz more nodes, things
will get more complicated as we continue to fold. We want to precisely describe
and represent this process. As usual, several questions should arise in our mind.
What variables or quantities are involved in this folding process? How are they
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Figure 1.8: A folded CON-embedded 4-dimensional hypercube in 8-node CON
with L(1) =2
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Figure 1.9: A folded CON-embedded 4-dimensional hypercube in 4-node CON
with L(2) =4

related? We want to create a mathematical madel that reflects reality as much
as possible.

By this examples, we realize that bothdilation and the number of virtual pro-
cessors to be simulated by a physical precessor depend directly on the number of
folding times. We also know that dilation and the number of virtual processors
are inversely related. In other words, as one grows, the other shrinks. Therefore,
we should accordingly name all these quantities as functions of folding times.
Let ¢t be the number of folding:times and L(¢} be the size of the folding or the
size of the virtual processors to be simulated by one coarser-grain processor.
Let D{¢) be the dilation. We also define the value of ¢ to be 0 < ¢ << d — 1 and
initially L(0) = 1 and the initial dilation size D{0) is 8 by proposition 1.

At this point we have gained a lot of information and insight from our
observation but it is still not precise. For instance, we mentioned earlier that
the dilation and the number of virtual processors are “inversely related”. What
exactly does this mean? Can we describe it mathematically? Of course, we can
and will see 1t shortly in the next section.

1.5 The Analysis

In this section we are going to translate our information and intuition gained
earlier into mathematics that will enable us to see the relationship of all factors.
We knew in the previous section that this mathematics involves folding times ¢,
dilation D{%), and latency L(#). How are we going to describe the relationship
of all these factors? Where should we begin to think about it? Remember that
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Figure 1.10: A folded CON-embedded 4-dimensional hypercube in 2-node CON
with L(3) =8

our goal 1s to see whether the CON-embedded hypercube is as “good” as the
traditional hypercube. What exactly is “good” in this context? If the CON-
embedded hypercube is as good as'the traditional hypercube, it should have the
same performance or time complexity for the same algorithm. Hence, we start
from here.

Let 7.2, be the time complexity of the traditional hypercube and 7% (t) be
the time complexity of the CON-embedded counterpart. Observe that we have
factored in thednformation that the time complexity of the CON-embedded
hypercub&'depends onfolding times ¢ into 7,£,,(t). We now want to describe
each notational symbol mathematically. Before we do, we have an important
assumption about the algorithm in the original hypercube. We assume that each
node in the hypercube runs the same algorithm. This is a realistic assumption
and will make our life easier in the analysis part.

We first describe the time complexity of the original hypercube 7;1;1. We
know that the time complexity in the original hypercube has nothing to do with
t, D(¢), or L(¢). What else do we know? We also know that the time in parallel
computation is divided into two parts: communication and computation. Let
7 557 be the communication time complexity and 755" be the computation
time complexity. Hence, we have the following equation.

— T+ T (11)

Observe that all of the terms in 1.1 are simply notational symbols that tell
us about the components of the time complexity of the original hypercube. Can
we do 1t better? Can we be more precise? We additionally know that the
computation time of each node is a function f(n) of the input size n. Therefore,
we factor in f(r) in 1.1 and have a new equation.

1011 1100 1101 1110 1111
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Toww = Toq * + T3 = fn) + T4 (1.2)
Congider next the time complexity of the CON-embedded hypercube 7,2, (2).
Certainly, it must invelve ¢, D{%), and L{#). But how does each of them play
its role in the time complexity? Once again, we try to gather all the facts.
Given a value of ¢, we know that each physical proceszor in the CON-embedded
hypercube simulates L{t) virtual processors in the original hypercube. Hence,
the computational time complexity in each node of the original hypercube should
be increased by a factor of L(t) in CON. Moreover, we also know that each edge
in the original hypercube is extended to at most {)(¢) edges in CON and the
parallel time complexity depends on the slowest process. Accordingly, given a
value of ¢, the communication time complexity in the original hypercube should
be increased by a factor of D(¢) in CON. Appropriately, we have the following
equation.

Trew(t) = L&) f (n) + DO T (1.3)

Now that we have equations (1.2) and (1.3). How are wegoing to learn

anything from them? After all, they are just facts. Remember that our goal

is to see whether the CON-embedded hypercube is as good as the traditional

hypercube. Can we, for example, do the following? Ceonsider equation (1.3) -
equation (1.2).

Trew(t) — Tota = L&) F () DO Tad™ — (F(0) + Tog™™ (1.4)

If equation (1.4) is evaluated to zero, we know that our CON-embedded hy-
percube is just as good as the original hypercube. If equation (1.4) is evaluated
to a negative quantity, we know that ocur CON-embedded hypercube iz that
much better than the eriginal hypercube. If equation (1.4} is evaluated to a
positive quantity, we know that our CON-embedded hypercube iz that much
worse than the original hypercube. Equation (1.4) seems really nice but it does
not tell us in terms of a factor. It would be a lot nicer or more descriptive if
we can say our CON-embedded hypercube is 10 times faster than the original
hypercube, for instance. Hence instead of subtraction, we use division. In other

words, we use the ratio m and name It scaling indicator.

We have come along very far at this point from nothing to the scaling in-
dicator. But look very carefully at equation (1.1). What are we adding? Are
we adding apples and oranges? In other words, does one unit of computation
time equate one unit of communication time. Of course not. We have to fix this
issue to reflect reality. Fortunately, fixing can be easily done. We convert com-
putation steps into communication steps. If one communication step equates €'

computation steps, we can derive two new equations as follows.

e

= LI Dy (16)

+ Tod"™ (1.5)
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Note that in reality C does exist. Furthermore, we also assume that @ Z

Lo which is reasonable in reality.

Tdeally, we would like our folded CON-embedded hypercube to perform at
least as well as the original hypercube. The question is whether this is possi-
ble. We have not yet proved that there exists a way to embed a d-dimensional
hypercube into a CON such that the ratio of the edge in the hypercube to the
edge in CON iz 1:1. After we did several experiments on papers, our intuition
informs us that the ratio of 1:1 is impossible, implying that it is not possible that
our folded CON-embedded hypercube performs at least as well as the original
hypercube. Here is the important part. How are we golng to convince others
to believe that such embedding is not possible? Experiments are certainly not
gufficient. Of course, we have to use mathematical reasoning to show it.

Before we start to do the formal proof, we again try to collect as many
related facts as possible. We know ¢, 71, 7L (¢), and the scaling indicator

%. Our goal is show that the CON-embedded hypercube is not as good as
the traditional hypercube. What exactly dees it mean? We need to state our
claim clearly. More precisely, we need to show that 7;1;1 # T.E () for all ¢ such
that 0 < ¢ < d — 1. First, observe that we need te show that this claim is true
for all values of {. We also note that ¢ depends on d.

A little bit of experiments might give us some insights. After picking some
gmall value of 4 and plugging each possible value of ¢ in equations (1.5) and (1.6),
our first Intuition seems totell that it'is not possible o make the two equations
equal. After second and third trials of small values of d, we are convinced
that the two equations aré not equal. How do we generalize this intuition for
all values of d andt? Tookat equations (1.5) and (1.6) carefully. The only
difference between the two equations is the factors L(t) and D(2) in (1.6). If the
two equations'are equal; both L{Z) and D(¢) have to be one simultaneously. [s
it possible? As it turns out, it is not possible. We formalize our intuition into
a proof.

Proposition 2 (No Exact Simulation). 75, #£ .2 (¢) for all 0 <t <d 1.

Proof. From (1.5) and (1.6) 7.4, = T,.£,(#) when L(t) = 1 = D(¢) but this is

not possible because D(tppx) = 1 = L(0) and #p0. = loge(D(0)) # 0 where
D(0) is the initial dilation. Thus, the propoesition helds. O

Proposition 2 tells us that ezact simulation of a hypercube on CON using
a folded CON-embedded hypercube ig not possible. It means that, when one
gimulates a hypercube in CON using a folded CON-embedded hypercube, some
glowdown in speed relative to that of the original hypercube can be expected,
regardless of the number of folding times. So the best we can hope for is the
gimulation with minimum slowdown. More specifically, we have to figure out
the value of ¢ that enables the minimum slowdown.
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